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COMPRESSION OF A MULTILAYERED MEDIUM UNDER THE ACTION OF 
A VARIABLE EXTERNAL PRESSURE* 

M.YU. IVANOV, V.K. KOROBOV, V.M. NIKOLAYENKO and K.P. STANYUKOVICH 

The solutions of equations describing the system of waves that arise when 
a rigid body is compressed by means of a pressure that varies with time, 
are obtained in the acoustic approximation. The case when the compressed 
medium consists of two layers of different initial density is considered. 
The solutions obtained can be generalized to the case of the compression 
of a multilayer medium. 

1. Let us consider the wave motions in a continuum under the action of a variable 
pressure p =p(t) applied at the boundary of the medium. The equation of state for the rigid 
continuum is usually given in the form p -Ppo= A (p"-pO")+BpZ', with the corresponding equation 
of the adiabatic curve p - p0 = A (p”-po”) + &(pmexp [(s-s&]-porn). We shall replacethelatter by 
the simpler equation of an adiabatic curve 

p = A (s) pv - B (1.1) 

When the deformations of an elastic solid are small, Hooke's law cr=ke holds, where k 
is the bulk modulus e is the deformation, E= (v-uO)IvO= pdp- 1, o is the stress and --o=p. 
We shall require that Eq.(l.l), in the linear approximation with respect to the deformation, 
shall be the same as Hooke's law -o= Ap,'--B - yaps”&. This yields Ap,V = B, yApov = k. We note 
that the velocity of sound co%= yApi-'= k/p. Knowing the bulk modulus or the velocity of sound, 
and specifying the quantity v, we can easily find the constants A and B for use in approxi- 
mating (1.1). 

We shall use the equations describing the propagation of the wave system in Lagrangian 
form, transforming them for convenience to the independent variables h,p: 

N up=r t,,. Zh - u = rpt,,,ltp (1.2) 
$ = ut 

P’ 
sp s 0 

(h= jpPdr. z = P+y(N + 1) ) 
Here r is the Eulerian coordinate, h is the Lagrangian mass coordinate, u is the velocity 

and s is the entropy; the subscript denotes the derivative with respect to the corresponding 
variable; N=O,l,Z for plane, cylindrical and spherical symmetry respectively. 

Using the first and third equation of (1.2), we transform the second equation of (1.2) 
as follows: 

z,, = ” + Ill+ (1.3) 
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Let us introduce the entalphy I. we know that (&lap), = V. By virtue of the last equation 
of (1.2) (f%l~Yp)~ = (ail+),,. and therefore we can write (1.3) in the form 

I,, ~~ (i f UVZ), (1.4) 

Eliminating the time from the first and third equation of (1.2) and transforming the 
result using (1.3), we obtain 

(gq, = (?),‘ 
We shall solve the problem in the acoustic approximation, i.e. we shall assume that 

q= uzI(2i)~l. Let us estimate the accuracy of this approximation. For the approximation (1.1) 
i = c2/(v - 1), and for the Riemann wave we have U= 2(c-cc,)/(y - 1). Then 

q=~[*-~]p=~[1-(+)8]2i &[l-(&)RJ2. e-9 
Suppose, for example, that p = 10'0 Pa I k = 3.10" Pa and y = 3. Then 7l z 10-s. 
Moreover, we will assume that p =p(t) everywhere except at the surfaces of discontinuity. 

2. When ri<l, Eq.(1.4) takes the form z,,= v and yields, after integration, 

x = v/t + 5 (P) (2.1) 
where k(p) is an arbitrary function. Eq.(1.5) is now transformed (taking into account (2.1)), 
into (~Ju)~ = 0 and yields, after integrating, ulrp = n (p) or 

(Eph + 4,) 11(P) 
IL = [(uh + Q(N + l)] N’(N+l) (2.2) 

where v(p) is an arbitrary function. Next we need to find the functions 5 (p) and n(p). If 
the compressive pressure is caused by a moving solid, then the velocity of the surface of the 
compressed medium is equal to the velocity of motion of the solid usI and the pressure pb at 
the boundary of the medium can easily be found since pb=f(us). If the compression is caused 
by the products of an explosion (PE), we have 

p= pl=pb' U =lJe = Ub (2.3) 

at the boundary between the compressed body and the PE. 
The quantities with the subscript e refer in this section to the PE, and b denotes the 

quantities at the boundary. We assume that for the PE pe= A&," - R,. 
From the condition on the shock wave front appearing in the compressed solid we have, 

in the acoustic approximation /I/: ub= 2(c0-ccb)/(v - 1). For the PE where we have a shock wave 
(when the explosion occurs on the right) or a rarefaction wave (when the explosion occurs on 
the left or is instantaneous), we have Ueb = 2 (%b - c,,)l(n-I). (Here and henceforth the sub- 
script 0 denotes the initial value). Expressing the velocity of sound in terms of the pressure, 
we obtain from (2.3) and the last two equations 

which yields pb(f). The initial velocity of sound in the PE c,o (t) is found from the inter- 
action between the PE and the fixed wall /l/, from the following relations: 

a) when the detonation travels towards the wall 

pe = p&l + %)$. p0 = 2, 4p,DV4, z = Dtll 

b) when the detonation travels away from the wall 

%D= Dt 
PQ=T’ ‘=I 

c) whenthe detonation is instantaneous, as in case b), with 

~0 = poD=/8, ‘I = fi Dt/(Z v%) 

For a standard explosive we have PO= 1.6g/cm3 and D = 8000 m/set. In cases b) and c) 
the pressure change is described by two sets of conditions, therefore the first compression 
wave and the following waves will aslo be described by two sets of conditions. To make it 
simpler, it makes sense to approximate the pressure in all cases by the relation pe = P&l + 
T)= where 7 = BDtlZ; P, a, 8, z1 = const, a z 3. If a very rigid medium is compressed, then the 
displacement of its surface will be negligible and in this case, instead of solving the 
problem in the exact formulation, taking into account the rarefaction wave travelling along 
the PE, it will be more sensible to increase somewhat the value of the index a by putting 
a=?%+&, nz3, e((i. 

Having obtained Pb (t) from (2.4), we have 
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Integrating this expression we obtain the law of motion of the surface of the compressed 
body 7b = 76 (t). Carrying outthe substitution t= t(p) and using P=Pb(t)we find, from (2.1), 

E (P) = xb (P) - u (P) h, = rb WNte’/(N + 1) - v (P) k, 

From (2.2) we obtain 

=a (PI 2 Is--c&)] CU,Ab + $J 
'(') = [(vh,+Q(N+ i)jN'(N+*) = y--l * [(uh,+E)(N+i)]N’(N+l) 

Here hb= p&tN+‘/(N+i) where 2R is the size of the compressed body. 
The velocity of the compression wavefront in the acoustic approximation is 

D= 
ub--cb--co 

2 
=_--5++i)+_((3_+~ 

2(Y- 1) 

Integrating the above expression, we obtain the law of motion of the wavefront 

(2.5) 

The compression wave will reach, at some t= 4, the centre of symmetry r,f (t,)= 0 and a 
reflected wave will appear. Since, when h=O, we must have rz0 at the centre, it follows 
from 12.1) that behind the reflected wave EEO or s= uoh,. We shall denote the parameters 
in front and behind the reflected wave by the indices 1 and 2 respectively. 

At the reflected wavefront we have, in the acoustic approximation, /l/ U* + Zc& - i) = 
2c&u - 1) - u,. Taking into account the fact that ul= 2(c0- c&‘&-i), we obtain 

tbg = 2 (2c* - cg - E,)/(Y - i) (2.6) 

The velocity of the reflected wavefront is 

& = *2++ + =l+fl 
2 =++-- 2;V:v*) c,= J$ 

Since we also have 

*=(4- 4 o& = 0 - P&J & 

we obtain from (2.6)-(2.8) 

(2.7) 

(2.8) 

% 2(2E~-Cg-C~) iY+i) J-Y 
1 - (c‘/s)':'y_" = (U- 1)[1 - (c,/,,)*'tv-n] - 2 (V - 1) --%--CC' -Q 

The above equations yield ca= c*(t) (and Pa= ~~(t));u*= u%(t). After this, integrating (2.7) 
we find the law of motion of the reflected wavefront 

The condition that the solutions match at the front yields rN"/(Nfl)=&fE = uJhlt, and 
this gives the Lagrangian coordinates before and behind the front hi(t) and h,(t), which will 
obviously be different. Further, making the substitution t=t@f and using the relation 
P=P%(~) obtained, we find 

n(p)=+ = 
(v- 1) u&(p) 

2(2ct --eo -cc,)]&(p) (N + l)]N'(N+l) 

which solves the problem of the reflected wave completely. Putting u*==O, we find the pressure 
and density at the centre of symmetry. Having solved the equation r,f(t)= Q(t), we find the time 
tR at which the reflected wave emerges at the surface of the compressed body. After this 
emergence another reflected wave appears, moving towards the centre of symmetry of the body. 
Fig.1 shows this system of waves. 

Let us discuss a possible refinement. Since 'b= un(p), it follows from the third relation 
of (1.2) that tp= q(p) or t= sq(p) dp +13 (h), and not simply t = r(p), as was written before in 
an approximation manner. It is theoretically easy, although relatively complicated to carry 
out in practice, to assume that t= x(P)+@ (h) and solvetheproblems of the compression and 
reflected waves anew, but we shall not carry out these calculations here. 

3. Let us consider a more complicated problem, namely the compression of a two-layer 
body. Let a symmetrical body radius R 1 contain inside it another body of radius R,, with 
density pe =#= P,. in close contact with the first body. Let the equation of state of the medium 
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of which the inner body is made, be pu-= An~2a-B2. 

When a compression wave travelling from the surface of the first medium arrives at the 
second medium at the instant t,, the second medium starts to compress. We find the time t, 
from (2.5), by putting r,f (t) = R,. Two waves appear at this instant of time. One wave travels 
to the right in the first medium, and the second wave travels to the left in the second medium, 
We shall denote the parameters of the media using letters with two indices. The first number 
will denote the medium, and the second number the wave. 

Let us write the equations of state of both media in the form 

(3.1) 

The following 

and we also have 

conditions must hold at the surface separating the two media: 

p1 = p.! = p', u1 = ul= U' 

U, := Q,z e 2 (c&x - c,,)i(y - 1) = 2 (cl* + c,o - Zc,,)l(y - 1) 
Ii? = 2 (Ego-c&6 - l) 

(3.2) 

(3.3) 

Eliminating cl2 and es1 from (3.1) and (3.3) and using conditions (3.2), we obtain the 
following relation for determining the velocity oftheboundary surface u*: 

W(6-1) A* 
[ 

(y - 1) u*/z + 2Cll - Cl0 Cm -. (6 - 1) p/2 

vyA1 1 
sy’tv-l) _ B 

1 

= A 

1 [ I/F& 1 --Bz _ 

The law of motion of the boundary surface is obtained by integrating 

r* (') =s u* dl 
t* 

After this we find +(t), cnt (t) and p12 (t), pzI (0 from (3.3) . The Lagrangian coordinates at 
the boundary surface are 

Fig.1 Fig.2 Fig.3 

Now "sing solution (2.1) for both media r*"'li(lv+l)=:~*=~rZh,*~ $,I8 = II&,* + E, and carrying 
out, as before, appropriate substitutions t = t(p), we find 

512 (PI) = 29 (p,) - v,*h,* = .T* (4) - cJI&Jf,N*‘/(N + 1) 

511 (a) = x* (ps) - vz,h.&* = 5* (p.J - **~~~~~(~ + I) 

Finally we obtain 
?l?(rn) = (I* (Pl)/rp* (PI), Sl(PZ) = ~*(h)/'p'(Pe) 

The wave 1 will travel to the centre andwillbereflected, thereflectedwave (wave 3) will 
travel towards the surface catching up with wave 2. prom then on, various situations may 
arise. Depending on the magnitude of the ratio RPIRI, wave 3 reflected from the centre will 
catch up with wave 2 before it emerges at the surface, or wave 2 will reach the surface 
earlier and in this case wave 3 will interact with the unloading wave travelling from the 
outer surface. Fig.2 depicts this system of waves. 

In conclusion, we shall consider the case when the second medium is replaced by a cavity. 
In this case we must put e= O,p, = 0 in all relations written for the second medium. When 
the first compression wave reaches the cavity, a rarefaction wave will travel along the first 
medium towards its outer surface, and the treatment of this wave is elementary. The dispersed 
material of the first medium will spread inside the cavity, and cleavage may occur at the 
boundary, at certain corresponding values of the pressure. 

If the cavity is filled with a porous material, the situation remains practically "n- 
changed for the first medium, but the porous medium will be compressed. The process can be 
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easily studied if the parameters of the first wave are known. Fig.3 shows the wave pattern 

for such cases. 
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FORCED OSCILLATIONS IN IMPERFECT AND STATICALLY LOADED SHELLS* 

A.YU. POPOV 

The influence of small, non-axisymmetric imperfections in the middle 
surface and of a static load, on the amplitude of the forced oscillations 
of shells of revolution of zero curvature, is studied. For this puropse, 
shells acted upon by a mixed load, namely a static and dynamic load, are 
computed. The problem of a mixed load applied to an ideal shell is 
reduced to the problem of statics for a shell containing imperfections 
which vary with time. The amplitude-frequency relations are constructed 
for the flexure of statically loaded shells within the range of the lowest 
resonance frequencies. It is shown that in the case of statically loaded 
shells these relations differ essentially from those for load-free shells. 
The greatest increase in the amplitude of forced oscillations is observed 
in forms where the number of waves in parallel corresponds to the lowest 
frequencies. 

In investigating the influence of static loads or form imperfections on the dynamic 
behaviour of shells, the greatest attention has been given, as a rule, to the change in the 
resonance frequencies. In practice, it is essential to know the behaviour of the oscillation 
amplitude under static loads, or resulting from form imperfections, and this is important when 
studying the dynamic behaviour of loaded shells as a whole. 

One of the methods of solving the problem of the statics or dynamics of imperfect shells 
is based on the introduction of irregularity parameters into the initial system of equations. 
A linear system of equations is chosen as the initial system. The small-parameter method is 
then used, just as was done in problems of the statics of imperfect shells /l-3/. The same 
approach can be used in the problem of shells under a mixed load, and such a problem has 
been studied experimentally**.(**Solodilov V.E. Study of the natural oscillations of shells 
using holographic interferometry. Candidate Dissertation, Moscow, Inst. problem mechaniki, 
Akad. Nauk SSSR, 1980). 

Let us considerthe forced oscillations of a shell of revolution with an imperfect middle 
surface, excited by an axisymmetric harmonic load. We shall describe the imperfections in 
the middle surface of the shell using functions of the type UQ,= ET(Z)COS~~~ where UI~ is the 
initial sag, z is the meridianal coordinate, v is the circular coordinate, m is the number 
of waves in parallel, and E is a number, small compared with the relative thickness of the 
shell. We shall write the coefficients of the solution of the system of equations describing 
the forced oscillations of an arbitrary shall, in the form of series in powers of the small 
parameter e. After substituting the coefficients and the solution into the initial system, 
the latter splits into several subsystems. The zeroth approximation corresponds to the 
problem of the forced oscillations of a perfect shell of revolution. Every subsequent 
approximation is constructed by integrating the system of equations for the perfect shell of 
revolution, with various right-hand sides in the equations of equilibrium as well as in the 
geometrical relations. Thus the analysis of a shell with small, non-axisymmetric imperfections, 
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